
Error-Detection Codes:
Algorithms and Fast Implementation

Gam D. Nguyen

Abstract—Binary CRCs are very effective for error detection, but their software implementation is not very efficient. Thus, many binary

non-CRC codes (which are not as strong as CRCs, but can be more efficiently implemented in software) are proposed as alternatives

to CRCs. The non-CRC codes include WSC, CXOR, one’s-complement checksum, Fletcher checksum, and block-parity code. In this

paper, we present a general algorithm for constructing a family of binary error-detection codes. This family is large because it contains

all these non-CRC codes, CRCs, perfect codes, as well as other linear and nonlinear codes. In addition to unifying these apparently

disparate codes, our algorithm also generates some non-CRC codes that have minimum distance 4 (like CRCs) and efficient software

implementation.

Index Terms—Fast error-detection code, Hamming code, CRC, checksum.

�

1 INTRODUCTION

EFFICIENT implementation of reliable error-protection
algorithms plays a vital role in digital communication

and storage because channel noise and system malfunc-
tion introduce errors in received and retrieved messages.
Here, we focus on binary error-detection codes that have
low overhead and minimum distance d � 4. Popular
error-detection codes used in practice include CRCs that
are generated by binary polynomials such as X16 þX15 þ
X2 þ 1 (called CRC-16) and X16 þX12 þX5 þ 1 (called
CRC-CCITT).

An h-bit CRC generated by GðXÞ ¼ ðX þ 1ÞP ðXÞ, where
P ðXÞ is a primitive polynomial of degree h� 1, has the
following desirable properties [1]. The CRC has maximum
codeword length of 2h�1 � 1 bits and minimum distance
d ¼ 4, i.e., all double and odd errors are detected. This code
also detects any error burst of length h bits or less, i.e., its
burst-error-detecting capability is b ¼ h. The guaranteed
error-detection capability of this h-bit CRC is nearly optimal
because its maximum codeword length almost meets the
upper bound 2h�1 and its burst-error-detecting capability
meets the upper bound h. The CRC is also efficiently
implemented by special-purpose shift-register hardware.

Although CRCs have nearly optimal properties and
efficient hardware implementation, many binary non-CRC
codes are proposed as alternatives to CRCs. These codes,
developed over many years and often considered as
unrelated to each other, do not have the CRC’s desirable
properties. Such non-CRC codes include weighted sum
code (WSC), Fletcher checksum (used in ISO), one’s-
complement checksum (used in Internet), circular-shift
and exclusive-OR checksum (CXOR), and block-parity code
(Fig. 1). See [4], [5], [9], [14] for implementation and

performance comparisons of CRCs and these non-CRC
codes. Perhaps the key reason for the appearance of the
non-CRC codes is that CRCs are not very efficiently
implemented in software. Software complexity refers to
the number of programming operations and hardware
complexity refers to the number of gates required for code
implementation. Investigations reported in [4], [9] indicate
that software processing of CRCs is slower than that of the
non-CRC codes. Thus, it is desirable to design error-
detection codes that are reliable and of low complexity.
One code is better than another if, for a fixed number of
check bits h, it has larger minimum distance d, larger burst-
error-detecting capability b, longer maximum codeword
length lmax, and lower complexity.

An important performance measure of a code, which is
not addressed in this paper, is its probability of undetected
error. For the binary symmetric channel, this probability can
be expressed in terms of the weight distribution of the code.
In general, the problem of computing the probability of
undetected error is NP-hard [7]. Some methods for
calculating or estimating this probability are given in [7].

Because the minimum distance d is often considered the
most important parameter, Fig. 1 ranks CRC as the best
code, WSC the second best, and so on. Although the WSC,
Fletcher checksum, and CXOR are defined only for an even
number of check bits h, both even and odd h can be used for
the other codes. The CRC, WSC, and Fletcher checksum can
be extended to have infinite length, but their minimum
distances all reduce to 2. Some discussions of burst-error-
detecting capability b are given in Appendix C (which can
be found on the Computer Society Digital Library at http://
computer.org/tc/archives.htm). In this paper, we focus on
code implementation by means of software. Because
computers can process information in blocks of bits (e.g.,
bytes or words), codes having efficient software implemen-
tation should also be processed in blocks of bits. Then, it is
natural to express code lengths in terms of the number of
blocks n and each block is s bits, i.e., the total number of bits
is ns. Most modern processors can efficiently handle block

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 1, JANUARY 2005 1

. The author is with the Information Technology Division, Naval Research
Laboratory, Washington, DC 20375. E-mail: nguyen@itd.nrl.navy.mil.

Manuscript received 27 Mar. 2003; revised 26 Feb. 2004; accepted 30 July
2004; published online 16 Nov. 2004.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 118495.

U.S. Government Work Not Protected by U.S. Copyright

size s ¼ 8; 16; 32; 64 bits. General-purpose computers and
compilers are increasingly faster and better. Thus, software
algorithms become more relevant and desirable. Software
algorithms are increasingly used in operations, modeling,
simulations, and performance analysis of systems and
networks. An important advantage of software implemen-
tation is its flexibility: It is much simpler to modify a
software program than to modify a chip full of hardwired
gates and buses.

In this paper, we present a general algorithm and its
systematic versions for constructing a large family of binary
error-detection codes (Section 2). This family contains all the
codes in Fig. 1 and other linear and nonlinear codes for error
detection. We unify the treatment of these seemingly
unrelated codes by showing that CRCs and the non-CRC
codes all come from a single algorithm (Section 3). Further,
the algorithm can produce some non-CRC codes that are not
only reliable (i.e., having minimum distance 4 as CRCs), but
also have fast software implementation (Section 4). We then
summarize and conclude the paper (Section 5). The paper is
supplemented with appendices (which can be found on the
Computer Society Digital Library at http://computer.org/
tc/archives.htm) that include theoremproofs, code segments
implemented in C programming language, as well as
discussions of CRCs, WSCs, and CXORs. The preliminary
version of this paper is presented in [10].

1.1 Notations and Conventions

We consider polynomials over only the binary field GF(2),
i.e., the polynomial operations are performed in polynomial
arithmetic modulo 2. Let A ¼ AðXÞ and B ¼ BðXÞ be two
polynomials, then AmodB is the remainder polynomial
that is obtained when A is divided by B with
degðAmodBÞ < degðBÞ. To ease the presentation of many
different codes (which can result in a large number of
parameters), we adopt the following sweeping conventions.
A j-tuple ða0; . . . ; aj�2; aj�1Þ denotes the binary polynomial
a0X

j�1 þ . . .þ aj�2X þ aj�1 of degree less than j. In this
paper, lowercase letters (such as h and a0) denote
nonnegative integers. The letters C and C1 denote codes,
other uppercase letters (such as A and Qi) denote
polynomials (or tuples), and X denotes the variable (or
indeterminate) of these polynomials. Further, the variableX
will be omitted from all polynomials, i.e., AðXÞ will be
denoted as A. We denote ui as the i-tuple whose
components are all us, u 2 f0; 1g. The notation ðl; k; dÞ

denotes a systematic code with l ¼ code length, k ¼
information block length, and d ¼ minimum distance.
Finally, if Y1 and Y2 are m1-tuple and m2-tuple, respectively,
then Y ¼ ðY1; Y2Þ denotes the concatenation of Y2 to Y1, i.e.,
Y is an ðm1 þm2Þ-tuple. Note that Y can also be written as
Y ¼ Y1X

m2 þ Y2. For ease of cross-referencing, we usually
label blocks of text as “Remarks.” These remarks are
integral parts of our presentation and they should not be
viewed as isolated observations or comments.

2 A GENERAL ALGORITHM FOR ERROR-DETECTION

CODES

In this section, we define a binary code so that each of its

codewords consists of n tuples Q0; Q1; . . . ; Qn�1, each tuple

is s bits. This code is not necessarily systematic and is

formulated abstractly to facilitate the development of its

mathematical properties. For practical use, we then con-

struct systematic versions of the code. Fast software

versions of the code will be presented later in Section 4. It

is important to note that Qi is an uppercase letter, so, by our

conventions, Qi is a polynomial of the variable X, i.e.,

Qi ¼ QiðXÞ. Further, being an s-tuple, Qi is also a

polynomial of degree less than s. The polynomial notation

facilitates the mathematical developments of codes. The

tuple notation is more appropriate for software implemen-

tation of codes because an s-tuple is a group of s bits, which

can be easily processed by computers. Note also that the

ns-tuple ðQ0; Q1; . . . ; Qn�2; Qn�1Þ is equivalent to the poly-

nomial
Pn�1

i¼0 QiX
ðn�1�iÞs of degree less than ns.

First, let C1 be a binary code with length s and minimum
distance d1. Let r and n be integers such that 1 � n � 2r. Let
W0;W1; . . . ;Wn�1 be distinct polynomials of degree less than
r. Let M be a polynomial of degree r such that M and X are
relatively prime, i.e., gcdðM;XÞ ¼ 1. Also, Qi is an s-tuple,
i � 0. Now, we are ready to introduce a new code that is
simply called “the code C” and is the focus of this paper.

Algorithm 1. Let C be the binary code such that each of its
codewords

ðQ0; Q1; . . . ; Qn�2; Qn�1Þ ð1Þ

satisfies the following two conditions:

Xn�1

i¼0

QiWi

 !
modM ¼ 0 ð2Þ

Xn�1

i¼0

Qi 2 C1: ð3Þ

Remark 1.

1. C is nonlinear if C1 is nonlinear.
2. From (3), the codewords of C have even weights

if the codewords of C1 have even weights.
3. The code C1 in Algorithm 1 can be nonsystematic.

However, we focus only on systematic codes,
which are more often used in practice. Thus, we
assume that C1 is an (s; s�m; d1Þ systematic code

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 1, JANUARY 2005

Fig. 1. Error-detection capabilities of binary codes (d ¼ minimum

distance, b ¼ burst-error-detecting capability, h ¼ number of check

bits, lmax ¼ maximum codeword length).

with m check bits, 0 � m � s. Let F be the
encoder of C1. Then, each codeword of C1 is
UXm þ F ðUÞ ¼ ðU; F ðUÞÞ, where U is an informa-
tion ðs�mÞ-tuple and F ðUÞ is the corresponding
check m-tuple.

4. In Algorithm 1, the weights W0;W1; . . . ;Wn�1 can
be chosen to be distinct polynomials of degree
less than r because 1 � n � 2r. However, Algo-
rithm 1 can be extended to allow n > 2r, then
W0;W1; . . . ;Wn�1 will not always be distinct (see
Section 3 later).

5. All the codes considered in this paper are binary
codes, i.e., their codewords consist of digits 0 or 1.
In particular, the code C is a binary code whose
codewords are ns bits. Computers can efficiently
process groups of bits. Thus, as seen in (1), each
ns-bit codeword is grouped into n tuples, s bits
each. Note that this binary code C can also be
viewed as a code in GFð2sÞ, i.e., as a code whose
codewords consist of n symbols, each symbol
belongs to GFð2sÞ. More generally, suppose that
ns ¼ xy for some positive integers x and y, then
this same binary code C can also be viewed as a
code whose codewords consist of x symbols, each
symbol belongs to GFð2yÞ. In the extreme case
(x ¼ 1, y ¼ ns), the code C is also a code whose
codewords consist of only one symbol that
belongs to GFð2nsÞ. Note that, when the same
code is viewed in different alphabets, their
respective minimum distances can be very differ-
ent. For example, consider the binary repetition
code f0k; 1kg of length k > 1. When viewed as the
binary code over GF(2), this code has minimum
distance d ¼ k. But, when viewed in GFð2kÞ, this
same code has minimum distance d ¼ 1.

Let d1 and dC be the minimum distances of the binary
codes C1 and C, respectively, in Algorithm 1. We then have
the following theorem that is proven in Appendix A (which
can be found on the Computer Society Digital Library at
http://computer.org/tc/archives.htm).

Theorem 1.

1. dC � 3 if d1 � 3.
2. dC ¼ 4 if d1 � 4.

Example 1. Now, we illustrate Algorithm 1 by construct-
ing a simple binary code C. Let s ¼ 4, m ¼ 3, r ¼ 2,
and n ¼ 2r ¼ 4. Thus, each codeword of the code C
is a 16-tuple ðQ0; Q1; Q2; Q3Þ, where each Qi is a
4-tuple. Let M ¼ X2 þX þ 1 be the modulating
(primitive) polynomial. Let the weighting polynomials
in (2) be W0 ¼ X þ 1, W1 ¼ X, W2 ¼ 1, and W3 ¼ 0.
Let C1 ¼ fð0; 0; 0; 0Þ; ð1; 1; 1; 1Þg, i.e., C1 is the ð4; 1; 4Þ
repetition code. Now, we wish to specify the desired
codeword ðQ0; Q1; Q2; Q3Þ. Let Q0 and Q1 be two
arbitrary 4-tuples. Then, Q2 and Q3 are determined as
follows: Let U1 and U2 be arbitrary 2-tuple and 1-tuple,
respectively. Then, we define Q2 ¼ ðU1; P1Þ and
Q3 ¼ ðU2; P2Þ, where P1 and P2 are determined as follows:
F i r s t , c o m p u t e t h e c h e c k 2 - t u p l e
P1 ¼ ðQ0W0 þQ1W1 þ U1X

2ÞmodM. Next, define

Y ¼ Q0 þQ1 þ ðU1X
2 þ P1Þ þ U2X

3

¼ Q0 þQ1 þQ2 þ U2X
3;

which is a 4-tuple. Thus, Y can be written as
Y ¼ Y1X

3 þ Y2 ¼ ðY1; Y2Þ, where Y1 is a 1-tuple and Y2

is a 3-tuple. Finally, we compute P2 ¼ Y2 þ ðY1; Y1; Y1Þ,
which is a 3-tuple.

Now, we wi l l show tha t the codeword
ðQ0; Q1; Q2; Q3Þ ¼ ðQ0; Q1; U1; P1; U2; P2Þ satisfies (2) and
(3) i n A l g o r i t h m 1 . S i n c e
P1 ¼ ðQ0W0 þQ1W1 þ U1X

2ÞmodM, we have

0 ¼ ðQ0W0 þQ1W1 þ U1X
2 þ P1ÞmodM:

Then, 0 ¼ ðQ0W0 þQ1W1 þQ2W2 þQ3W3ÞmodM be-
c a u s e Q2W2 ¼ U1X

2 þ P1 a nd Q3W3 ¼ 0. T h u s ,
ðQ0; Q1; Q2; Q3Þ satisfies (2). Next,

Q0 þQ1 þQ2 þQ3 ¼ Y þ U2X
3 þQ3

ðbecause Y ¼ Q0 þQ1 þQ2 þ U2X
3Þ

¼ Y þ U2X
3 þ ðU2; P2Þ

¼ Y þ P2 ½because ðU2; P2Þ ¼ U2X
3 þ P2�

¼ ðY1; Y2Þ þ Y2 þ ðY1; Y1; Y1Þ
¼ ðY1; Y1; Y1; Y1Þ 2 C1:

Thus, ðQ0; Q1; Q2; Q3Þ ¼ ðQ0; Q1; U1; P1; U2; P2Þ also satis-
fies (3). By exchanging P1 and U2, the codeword becomes
ðQ0; Q1; U1; U2; P1; P2Þ, which is a codeword of a sys-
tematic code because ðQ0; Q1; U1; U2Þ are the 11 informa-
tion bits and ðP1; P2Þ are the 5 corresponding check bits.
Because d1 ¼ 4, dC ¼ 4 by Theorem 1.2. Thus, C is
identical to the ð16; 11; 4Þ extended Hamming code.

2.1 Systematic Encoding

In general, the binary code C in Algorithm 1 is not
systematic. Now, we construct its systematic versions.
Recall that r is the degree of the modulating polynomial M
and s is the number of bits contained in each tuple Qi. Let
r � s and suppose that information tuples

ðQ0; Q1; . . . ; Qn�3; U1; U2Þ ð4Þ

are given, where U1 is an ðs� rÞ-tuple and U2 is an
ðs�mÞ-tuple. We wish to append a check r-tuple P1 and
a check m-tuple P2 to (4) so that the resulting codeword is

ðQ0; Q1; . . . ; Qn�3; U1; U2; P1; P2Þ: ð5Þ

Thus, the code C is ns bits long and has h ¼ rþm check
bits. Denote dC as its minimum distance, then C is an
ðns; ns� r�m; dCÞ code. Then, we have the following
algorithm that is proven in Appendix A (which can be
found on the Computer Society Digital Library at http://
computer.org/tc/archives.htm).

Algorithm 1a. When r � s, the two check tuples of a
systematic version of the binary code C can be computed by

P1 ¼
Xn�3

i¼0

QiWi þ U1X
r

 !
modM ð6Þ

P2 ¼ Y2 þ F ðY1Þ; ð7Þ

NGUYEN: ERROR-DETECTION CODES: ALGORITHMS AND FAST IMPLEMENTATION 3

where Wi 6¼ 0; 1 and F is the encoder of C1 as defined in
Remark 1.3. The tuples Y1 and Y2 are determined as

follows: Let

Y ¼
Xn�3

i¼0

Qi þ U1X
r þ P1 þ U2X

m;

which is an s-tuple that can be written as

Y ¼ Y1X
m þ Y2 ¼ ðY1; Y2Þ, where Y1 and Y2 are an ðs�

mÞ-tuple and an m-tuple, respectively.

Remark 2. After P1 is computed, P2 is easily computed

when C1 is one of the following four types of codes: The

first two types of codes, given in 1 and 2 below, are very
trivial, but they are used later in Section 3 to construct all

the codes in Fig. 1. The next two types of codes, given in

3 and 4 below, are commonly used in practice for error

control.

1. If m ¼ s, then C1 ¼ f0sg, which is an ðs; 0; d1Þ
code, where the minimum distance d1 is unde-
fined. This very trivial code is called a useless
code because it carries no useful information.
However, it can detect any number of errors, i.e.,
we can assign d1 ¼ 1 for this particular code.
Further, it can be shown that Theorem 1.2
remains valid when m ¼ s, i.e., dC ¼ 4 if
C1 ¼ f0sg. Then, from Algorithm 1a, we have
U2 ¼ 0, F ¼ 0s, Y1 ¼ 0, and

P2 ¼ Y2 ¼ Y ¼
Xn�3

i¼0

Qi þ U1X
r þ P1:

2. If m ¼ 0, then C1 ¼ f0; 1gs, which is an ðs; s; 1Þ
code. This very trivial code is called a powerless
code because it protects no information. From
Algorithm 1a, we have Y2 ¼ 0, F ¼ 0,

Y1 ¼ Y ¼
Xn�3

i¼0

Qi þ U1X
r þ P1 þ U2;

and P2 ¼ 0.
3. If C1 is a systematic linear code with parity check

matrix H1 ¼ ½AI�, where A is an m� ðs�mÞ
matrix and I is the m�m identity matrix, then
F ðUÞ ¼ UAtr, where “tr” denotes matrix trans-
pose. Thus, P2 ¼ Y2 þ F ðY1Þ ¼ Y2 þ Y1A

tr ¼ YHtr
1 .

4. If C1 is a CRC generated by a polynomial M1 of
degree m, then F ðUÞ ¼ ðUXmÞmodM1 (see Ap-
pendix B, which can be found on the Computer
Society Digital Library at http://computer.org/
tc/archives.htm). Thus,

P2 ¼ Y2 þ ðY1X
mÞmodM1 ¼ ðY1X

m þ Y2ÞmodM1

¼ Y modM1:

Algorithm 1a is for the case r � s, where the check

r-tuple P1 can be stored in a single s-tuple. Now, we

consider the case r > s. Then, several s-tuples are
needed to store the check r-tuple P1. Because r > s,

we can write r ¼ asþ b, where a � 1 and 0 < b � s.

For example, let s ¼ 8, then a ¼ 1 and b ¼ 4 if r ¼ 12,
whereas a ¼ 1 and b ¼ 8 if r ¼ 16. Thus, P1 can be
stored in aþ 1 tuples: The first tuple is b bits and
each of the next a tuples is s bits. Now, assume that
information tuples ðQ0; Q1; . . . ; Qn�a�3; U1; U2Þ are given,
where each Qi is s bits, U1 is s� b bits, and U2 is s�m bits.
We assume here that n� a� 3 � 0 or n � aþ 3, to avoid
triviality. We wish to append two checks tuples P1 and P2 to
ðQ0; Q1; . . . ; Qn�a�3; U1; U2Þ so that

ðQ0; Q1; . . . ; Qn�a�3; U1; U2; P1; P2Þ

becomes a codeword of a systematic ðns; ns� r�m; dCÞ
code. Then,we have the following algorithm that is proven in
Appendix A (which can be found on the Computer Society
Digital Library at http://computer.org/tc/archives.htm).

Algorithm 1b. When r > s, the two check tuples of a
systematic version of the binary code C can be computed by

P1 ¼
Xn�a�3

i¼0

QiWi þ U1X
r

 !
modM and P2 ¼ Y2 þ F ðY1Þ;

where F is the encoder of C1 and

Wi 6¼ Xas;Xða�1Þs; . . . ; Xs; 1; 0:

The tuples Y1 and Y2 are determined as follows: Define

Y ¼
Xn�a�3

i¼0

Qi

 !
þ U1X

b þ P10

� �
þ

Xa
i¼1

P1i

 !
þ U2X

m;

where P10 is a b-tuple and P11; . . . ; P1a are s-tuples that
satisfy P1 ¼ ðP10; P11; . . . ; P1aÞ. Then, Y is an s-tuple that can
be written as Y ¼ Y1X

m þ Y2 ¼ ðY1; Y2Þ, where Y1 and Y2 are
an ðs�mÞ-tuple and an m-tuple, respectively.

Example 2. Recall that C is an ðns; ns� r�m; dCÞ code that
is constructed by either Algorithm 1a (if r � s) or
Algorithm 1b (if r > s). This code has h ¼ rþm check
bits. In this example, we assume that h ¼ 16 bits and we
present different ways to construct the codes C. The
results are shown in Fig. 2. For example, using
Algorithm 1b, we can construct the code C with the
following parameters: s ¼ 8, r ¼ 12, m ¼ 4, C1 ¼ ð8; 4; 4Þ
code, a ¼ 1, and b ¼ 4 (a and b are not needed in
Algorithm 1a). Assume that the number of s-tuples
satisfies n � 2r, i.e., the number of bits in each codeword

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 1, JANUARY 2005

Fig. 2. Construction of the codes C using16 check bits.

is ns � 2rs ¼ 215. Then, the weighting polynomials Wi

can be chosen to be distinct. From Remark 2.1, we have
d1 � 4. Then, from Theorem 1.2, all the codes C in Fig. 2
have minimum distance dC ¼ 4.

3 SOME SPECIAL ERROR-DETECTION CODES

This section shows that the binary code C of Algorithm 1 is
general in the sense that it includes all the codes in Fig. 1 and
other codes as special cases. Recall that Algorithm 1’s
systematic version is either Algorithm 1a (if r � s) or
Algorithm 1b (if r > s), where r is the degree of the
modulating polynomial M and s is the number of bits
contained in each tuple Qi. The code C depends on the
components such as the parameters r;m; s; n, the weights
W0;W1; . . . ;Wn�1, and the code C1. Thus, different compo-
nents will produce different codes C. We now show that
Algorithm 1 produces the codes in Fig. 1 by letting C1 be
trivial codes suchas ðs; s; 1) andf0sgdefined inRemark2.The
algorithm also produces other linear and nonlinear codes
(Sections 3.1, 3.6, and 3.8). Generally, codes of dC ¼ 4 require
that n � 2r and the weightsW0;W1; . . . ;Wn�1 in Algorithm 1
be distinct. Codes of dC ¼ 3 require that n � 2r þ 1 and allow
someof theweights to be repeated.CodesofdC ¼ 2 also allow
some of the weights to be repeated, but do not restrict on the
value of n, i.e., the code lengths can be arbitrary. The
following codes are briefly presented because their detailed
discussions can be found elsewhere [4], [5], [9], [14].

3.1 Binary Extended Perfect Code

We now show that Algorithm 1 produces an extended
perfect code if the code C1 is an extended perfect code.
Suppose that C1 is a ð2m�1; 2m�1 �m; 4Þ extended perfect
code (see [8, Chapter 6]), i.e., s ¼ 2m�1 and d1 ¼ 4. Let n ¼ 2r

and h ¼ rþm, then the code C has ns ¼ 2rþm�1 ¼ 2h�1 bits.
Then, dC ¼ 4 by Theorem 1.2 and C is a ð2h�1; 2h�1 � h; 4Þ
extended perfect code. Note that deleting a check bit from
an extended perfect code will yield a perfect code, while
adding an overall even parity bit to a perfect code will yield
an extended perfect code.

Algorithms 1a and 1b can be further generalized to
include the extended perfect code of [15] as follows: Recall
that P1, P2, and Y1 are the check r-tuple, check m-tuple, and
ðs�mÞ-tuple, respectively, which are computed from
Algorithms 1a or 1b. Let Eð:Þ be any function from the set
of ðs�mÞ-tuples to the set of r-tuples. Now, define the new
check r-tuple and check m-tuple by

P �
1 ¼ P1 þEðY1Þ and P �

2 ¼ P2 þ even parity of EðY1Þ:

Then, it can be shown that, if C1 is an extended perfect code
and n ¼ 2r, then the resulting code C whose check tuples
are P �

1 and P �
2 is also an extended perfect code. Further,

when r ¼ 1, this extended perfect code becomes the
extended perfect code that is obtained from the systematic
perfect code of [15].

3.2 Weighted Sum Code (WSC)

Consider the code C for the special case s ¼ r ¼ m. By
Remark 2.1, we have C1 ¼ f0sg, U1 ¼ 0, U2 ¼ 0, Y1 ¼ 0, and
Y2 ¼ Y ¼

Pn�3
i¼0 Qi þ P1. From (6) and (7) of Algorithm 1a,

we have

P1 ¼
Xn�3

i¼0

QiWi modM and P2 ¼
Xn�3

i¼0

Qi þ P1: ð8Þ

Thus, this special code C is the WSC presented in [4], [9]. It
is shown in [3] that the WSC, when viewed as a code in
GFð2sÞ, is equivalent to a lengthened single-error correcting
Reed Solomon code (see also [8, p. 323]).

3.3 Block-Parity Code

Suppose that r ¼ 0 and m ¼ s. Thus, by Remark 2.1,
C1 ¼ f0sg, Qn�2 ¼ U1, P1 ¼ 0 (because r ¼ 0), Y1 ¼ 0, and
U2 ¼ 0 (because m ¼ s). Then,

Y2 ¼ Y ¼
Xn�3

i¼0

Qi þ U1 ¼
Xn�2

i¼0

Qi:

From (7) of Algorithm 1a, we have P2 ¼ Y ¼
Pn�2

i¼0 Qi. Thus,
the resulting code C is the block-parity code presented in [4].

3.4 Cyclic Redundancy Code (CRC)

Consider an h-bit CRC that is q bits long and is generated by a
polynomial M. Suppose that q and h can be written as q ¼
xþ ðn� 1Þs and h ¼ asþ b, where n � 1, 0 � x � s, a � 0,
and 0 < b � s (see Appendix B, which can be found on the
Computer Society Digital Library at http://computer.org/
tc/archives.htm). Then, it is shown in Remark B1 that the
CRC check tuple is

P ¼
Xn�a�2

i¼0

QiWi þ U1X
r

 !
modM;

whereWi ¼ Xðn�1�iÞs modM, i ¼ 0; 1; . . . ; n� a� 2. Further,
we show in Remark B1 that the weighting polynomials Wi

are distinct and Wi 6¼ 0; 1; Xs; . . . ; Xas, provided that q �
2h�1 � 1 and M is the product of ðX þ 1Þ and a primitive
polynomial of degree h� 1.

Now, consider the code C that has the same length and
the same weighting polynomials as the above CRC. Let r ¼
h and m ¼ 0. Then, P2 ¼ 0 by Remark 2.2 and P1 ¼ P by
Algorithm 1a (if r � s) or by Algorithm 1b (if r > s). Thus,
this particular code C is identical to the above CRC. So, any
CRC can be generated by either Algorithm 1a or
Algorithm 1b, i.e., by Algorithm 1.

Remark 3. To construct other codes (such as CXOR
checksum and nonbinary Hamming codes), we need to
modify (3) by deleting Qn�2 from the summation, but (2)
remains unchanged. That is, (3) is replaced by

Xn�3

i¼0

Qi þQn�1

 !
2 C1: ð9Þ

Then, Algorithm 1a remains valid if we define Y ¼Pn�3
i¼0 Qi þ U2X

m because the term Qn�2 ¼ U1X
r þ P1 is

absent from (9).

3.5 CXOR Checksum

Suppose now that we allow some of the polynomials
W0;W1; . . . ;Wn�1 in (2) to be repeated and we use
Algorithm 1a along with variation (9). Let r ¼ s ¼ m,
M ¼ Xs þ 1, and Wi ¼ Xi modM. It can be shown that
Wiþs ¼ Wi for all i � 1, i.e., some of the weighting

NGUYEN: ERROR-DETECTION CODES: ALGORITHMS AND FAST IMPLEMENTATION 5

polynomials may repeat. Then, C1 ¼ f0sg (because m ¼ s),
U1 ¼ 0 (because r ¼ s), and U2 ¼ Y1 ¼ 0 (because m ¼ s).
From (6) and (7), we have P1 ¼

Pn�3
i¼0 QiX

i mod ðXs þ 1Þ
and P2 ¼ Y2 ¼ Y ¼

Pn�3
i¼0 Qi (see Remark 2.1 and

Remark 3). Thus, the resulting code C is the CXOR
checksum presented in [4].

3.6 Nonbinary Perfect Code

Suppose that Algorithm 1a along with variation (9) is
applied with r ¼ s ¼ m and n ¼ 2m þ 1. Let M be a
primitive polynomial of degree m and let

W0;W1; . . . ;Wn�3

be distinct and nonzero polynomials. Then, C1 ¼ f0sg,
P1 ¼

P2m�2
i¼0 QiWi modM, and P2 ¼

P2m�2
i¼0 Qi. It then can

be shown that P1 and P2 are two check tuples of the
nonbinary Hamming perfect code over GFð2mÞ (see [8,
Chapter 6]), i.e., the tuples ðQ0; Q1; . . . ; Q2m�2; P1; P2Þ form
the codewords of the Hamming perfect code over GFð2mÞ.

3.7 One’s-Complement Checksum and Fletcher
Checksum

The above codes are constructed using polynomial arith-
metic because each tuple is considered as a polynomial over
the binary field f0; 1g. An alternative is to consider each
tuple as an integer and to use the rules of (one’s-
complement) integer arithmetic to manipulate the code
construction. If we apply the integer arithmetic to the
construction of the block-parity code and to the nonbinary
perfect code, we will get the one’s-complement checksum
and Fletcher checksum, respectively. However, these
integer-based codes are often weaker than their binary
polynomial counterparts (see Fig. 1). See [4], [5], [9] for
definitions and performance comparisons of error-detection
codes, including the one’s-complement and Fletcher check-
sums. Thus, the integer-arithmetic version of Algorithm 1a,
along with variation (9), also produces the one’s-comple-
ment and Fletcher checksums. We will not discuss these
checksums and integer-based codes any further because
they are often weaker than their polynomial counterparts
and their analyses can be found elsewhere (e.g., [5], [14]).

3.8 Other Error-Detection Codes

Recall from Algorithms 1a and 1b that the ðns; ns� r�
m; dCÞ code C is constructed from an ðs; s�m; d1Þ code C1.
Thus, by varying C1, different codes C are produced.
Further, C is nonlinear if C1 is nonlinear. Thus far, the codes
C are constructed from the codes C1 that are either
extended perfect codes or trivial codes f0sg and ðs; s; 1Þ.
Now, we construct the codes C from the codes C1 that are
neither perfect nor trivial. In both instances below, we
assume that s ¼ rþm ¼ 16, n ¼ 2r with r ¼ 7 or 8, and
d1 ¼ 6, so that dC ¼ 4 by Theorem 1.2.

1. Suppose that C1 is the extended ð16; 7; 6Þ linear BCH
code (see [8], Chapter 3) and r ¼ 7. Then, ns ¼ 2rs ¼
2;048 and the resulting code C is a ð2;048; 2;032; 4Þ
linear code.

2. Suppose that C1 is the extended ð16; 8; 6Þ nonlinear
Nordstrom-Robinson code (see [8, p. 73]) and
r ¼ 8. Then , ns ¼ 2rs ¼ 4;096, and C i s a

ð4;096; 4;080; 4Þ nonlinear code that is twice as
long as the linear code in 1.

4 FAST IMPLEMENTATION OF ERROR-DETECTION

CODES

Recall from Algorithm 1 that r is the degree of the
modulating polynomial M and s is the number of bits
contained in each tuple Qi. Algorithm 1 produces a large
family of error-detection codes because its systematic
versions (either Algorithm 1a when r � s or Algorithm 1b
when r > s) generate all the codes presented in Section 3. So
far, the discussion is abstract and general to facilitate the
development of mathematical properties of our algorithms.
In this section, we focus on the practical aspect of these
algorithms, i.e., we now discuss how some codes generated
by these algorithms can be efficiently implemented in
software. Then, we compare the complexity of our
algorithms with that of the CRC algorithm (the strongest
code in Fig. 1). In theory, the fundamental unit for digital
data is bit. In practice, however, communication protocols
and computers often process data as blocks of bits or tuples
(e.g., bytes or words) and not as individual bits at a time.
For example, on familiar 32-bit computers, the modulo-2
addition of two 32-bit numbers can be accomplished by a
single XOR operation (using C programming language).
Thus, efficient error-detection codes should also be pro-
cessed in terms of tuples at a time, i.e., each ns-bit codeword
is expressed in terms of n tuples, s bits each.

In parallel to Algorithm 1a and Algorithm 1b, now we
develop two fast algorithms: Algorithm 2a for r � s and
Algorithm 2b for r > s. Although Algorithms 1a and 1b can
produce CRCs and many other codes (see Section 3), the
two fast algorithms produce only non-CRC codes that are
shown later in Section 4.1 to be faster than CRCs by the
factor OðsÞ.

Now, suppose that information tuples

ðQ0; Q1; . . . ; Qn�3; U1; U2Þ

are given. Let r, s, and m be such that r � s and n � 2r.
Assume that each Qi is s bits, U1 is s� r bits, and U2 is
s�m bits. From the following algorithm, we can compute
the two check tuples P1 and P2 that are appended to the
information tuples such that the resulting code C has
minimum distance dC ¼ 4.

Algorithm 2a. Let r � s and n � 2r. Let M be a primitive
polynomial of degree r and let F be the encoder of an ðs; s�
m; d1Þ code with d1 � 4. Then, the resulting code C is an
ðns; ns� r�m; 4Þ code and each of its codewords is
ðQ0; Q1; . . . ; Qn�3; U1; U2; P1; P2Þ. The two check tuples are
computed by

P1 ¼ ðZ þ U1X
rÞmodM and P2 ¼ Y2 þ F ðY1Þ;

where Z ¼
Pn�3

i¼0 QiX
n�2�i mod ðMXs�rÞ. The tuples Y1 and

Y2 are defined as in Algorithm 1a, i.e., they satisfy
ðY1; Y2Þ ¼ Y1X

m þ Y2 ¼ Y ¼
Pn�3

i¼0 Qi þ U1X
r þ P1 þ U2X

m.

Proof. Define Wi ¼ Xn�2�i modM, i ¼ 0; 1; . . . ; n� 3. Then,
Wi 6¼ 0; 1 and W0;W1; . . . ;Wn�3 are distinct because M is
a primitive polynomial of degree r and n � 2r. Let C1 be
the ðs; s�m; d1Þ code with the encoder F . Now, using

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 1, JANUARY 2005

these Wi and C1 in Algorithm 1a, we can construct the
code C whose two check tuples are given by

P1 ¼
Xn�3

i¼0

QiWi þ U1X
r

 !
modM and P2 ¼ Y2 þ F ðY1Þ:

Because d1 � 4, dC ¼ 4 by Theorem 1.2. Next, the new
form of P1 is derived as follows: First, note that

Xs�rWi ¼ ðXs�rXn�2�iÞmod ðMXs�rÞ: ð10Þ

Multiplying P1 by Xs�r, we have

P1X
s�r ¼

Xn�3

i¼0

QiWi þ U1X
r

 !
Xs�r mod ðMXs�rÞ: ð11Þ

From (10), (11), the definition of Z, and some
modular algebra manipulation, it can be shown that
P1X

s�r ¼ ðXs�rZ þ U1X
rXs�rÞmod ðMXs�rÞ. Thus,

P1X
s�r ¼ ððZ þ U1X

rÞmodMÞXs�r: ð12Þ

From (12), we have P1 ¼ ðZ þ U1X
rÞmodM. tu

Remark 4. Let I and J be two binary polynomials of
degrees i and j, respectively. In general, it is rather
tedious to compute I mod J . However, when i � j, the
computation becomes easy and is accomplished in
constant time because

I mod J ¼ I if i < j
I þ J if i ¼ j:

�

This simple fact is used to efficiently compute Z ¼Pn�3
i¼0 QiX

n�2�i mod ðMXs�rÞ in Algorithm 2a, as follows:
Using Horner’s rule, we have

Z ¼ ð. . . ððQ0XÞmodN þQ1ÞX modN þ . . .þQn�3ÞmodN;

where N ¼ MXs�r. Then, Z can be recursively
computed from the polynomials Ti defined by T0 ¼
Q0 a nd Ti ¼ ðTi�1XÞmodN þQi, i ¼ 1; . . . ; n� 3.
Because s ¼ degN � degðTi�1XÞ, each Ti is computed
in constant time, i.e., with Oð1Þ complexity. Finally, we
have Z ¼ ðTn�3XÞmodN . Thus, Z has computational
complexity OðnÞ. Horner’s rule is also used to efficiently
encode the WSC [4], [9].

Fig. 3 shows a simple software implementation of
Algorithm 2a. The input data are ðQ0; Q1; . . . ; Qn�3; U1; U2Þ.
The output is the check tuple P ¼ ðP1; P2Þ. The “for” loop is
used to compute both Y and T . Computation of Y requires
only one XOR operation, while T can be efficiently
computed via Remark 4 because degN � degðTXÞ. Then,
the final value of T is used to compute Z, i.e.,
Z ¼ ðTXÞmodN .

Now, we consider a fast version of Algorithm 1b for
constructing the code C. In this case, r > s, i.e., r ¼ asþ b,
where a � 1 and 0 < b � s. Assume that information
tuples ðQ0; Q1; . . . ; Qn�a�3; U1; U2Þ are given, where each
Qi is s bits, U1 is s� b bits, and U2 is s�m bits. We wish
to append two checks tuples P1 and P2 to the information
tuples so that ðQ0; Q1; . . . ; Qn�a�3; U1; U2; P1; P2Þ is a code-
word of the code C. Before stating the algorithm, we
need some preliminary results.

Remark 5. Algorithm 2b, which will be discussed

shortly, requires operations on new tuples

Q�
0; Q

�
1; . . . ; Q

�
n�3 that are defined from the original

tuples Q0; Q1; . . . ; Qn�a�3 as follows: First, let

U ¼ f0; 1; . . . ; n� 4; n� 3g, then we partition the set U

into four sets P, Q, X, and Y:

P ¼ fi : 0 � i � n� 3� a; i ¼ n� 2� js

for some j; 1 � j � ag;
Q ¼ fi : 0 � i � n� 3� a; i 6¼ n� 2� js

for all j; 1 � j � ag;
X ¼ fi : n� 3� a < i � n� 3; i ¼ n� 2� js

for some j; 1 � j � ag;
Y ¼ fi : n� 3� a < i � n� 3; i 6¼ n� 2� js

for all j; 1 � j � ag:

Because jPj þ jXj � a and a ¼ jXj þ jYj, we have

jPj � jYj. Let p ¼ jPj, then Y has at least p elements.

So, let Y� be the set of p smallest elements of Y, i.e.,

Y� ¼ ff1; f2; . . . ; fpg. S im i l a r l y , w e c a n w r i t e

P ¼ fe1; e2; . . . ; epg. Finally, we can define the new tuples

Q�
0; Q

�
1; . . . ; Q

�
n�3 from Q0; Q1; . . . ; Qn�a�3 as follows:

Q�
i ¼

0 if i 2 P [X
Qi if i 2 Q
0 if p < i � n� 3;

8<
:

and Q�
fi
¼ Qei if 1 � i � p.

Remark 6. Now, assume that s � aþ 1 and n � 2þ as,

we will show that these conditions will simplify

the definition of Q�
i (given in Remark 5). It can be

shown from these conditions that 0 � n� 2� js �
n� 3� a for all 1 � j � a. Then, from Remark 5,

we have p ¼ jPj ¼ a, jXj ¼ 0, jYj ¼ a, and Y� ¼ Y.

We also have Y� ¼ fn� 2� j; j ¼ a; a� 1; . . . ; 1g and

P ¼ fn� 2� js; j ¼ a; a� 1; . . . ; 1g. Note that fi ¼ n�
2� ðaþ 1� iÞ and ei ¼ n� 2� ðaþ 1� iÞs, 1 � i � a.

Thus , Q�
fi
¼ Qei i f f Q�

n�2�ðaþ1�iÞ ¼ Qn�2�ðaþ1�iÞs i f f

Q�
n�2�js ¼ Qn�2�js. Finally, from Remark 5, we have

NGUYEN: ERROR-DETECTION CODES: ALGORITHMS AND FAST IMPLEMENTATION 7

Fig. 3. Pseudocode for Algorithm 2a. Here, Qi, U1, and U2 are input

information tuples, P is the output check tuple.

Q�
i ¼ Qi if i 6¼ n� 2� js; 1 � j � a; 0 � i � n� 3� a;

Q�
n�2�js ¼ 0; 1 � j � a; and

Q�
n�2�j ¼ Qn�2�js; 1 � j � a:

Basically, Q�
0; Q

�
1; . . . ; Q

�
n�3 are obtained by moving

some a tuples of Q0; Q1; . . . ; Qn�a�3 to the right and

then by filling the a removed tuples by zeros. Now,

define Z ¼
Pn�3

i¼0 Q�
i X

n�2�i modM, which is a key

quantity in the following algorithm. This simplified

definition of Q�
i makes it possible to calculate Z directly

from Qi (i.e., without using Q�
i). That is, we first modify

Qi using the following pseudocode:

forð1 � j � aÞQn�2�j ¼ Qn�2�js;

forð1 � j � aÞQn�2�js ¼ 0;

then we can compute Z directly from the modified Qi as

Z ¼
Pn�3

i¼0 QiX
n�2�i modM.

Now, we have the following algorithm that is proven in

Appendix A (which can be found on the Computer Society

Digital Library at http://computer.org/tc/archives.htm).

Algorithm 2b. Suppose that r > s and n � 2r. Let M be a

primitive polynomial of degree r and let F be the encoder of

an ðs; s�m; d1Þ code with d1 � 4. Then, the two check

tuples of the code C are computed by

P1 ¼ ðZ þ U1X
rÞmodM and P2 ¼ Y2 þ F ðY1Þ;

where Z ¼
Pn�3

i¼0 Q�
i X

n�2�i modM and Q�
i are defined in

Remark 5 (or in Remark 6 if applicable). The tuples Y1 and

Y2 are defined as in Algorithm 1b, i.e., they satisfy

ðY1; Y2Þ ¼ Y1X
m þ Y2 ¼ Y

¼
Xn�a�3

i¼0

Qi

 !
þ U1X

b þ P10

� �
þ

Xa
i¼1

P1i

 !
þ U2X

m;

where P10 is a b-tuple, and P11; . . . ; P1a are s-tuples that

satisfy P1 ¼ ðP10; P11; . . . ; P1aÞ. Further, C is an ðns; ns�
r�m; 4Þ code.

Fig. 4 shows a software implementation of

Algorithm 2b under the assumption that s � aþ 1 and

n � 2þ as as required in Remark 6. The input data are

Q0; Q1; . . . ; Qn�a�3; U1; U2. The output is the check tuple

P ¼ ðP1; P2Þ. Note that, as in Algorithm 2a (see

Remark 4), the tuple Z in Algorithm 2b can also be

computed in time OðnÞ.
Example 3. Here, we construct the code C for the case r > s,

with s ¼ 8 and r ¼ 12. Let m ¼ 4, then the total number

of check bits is h ¼ rþm ¼ 16. Because r > s, we can

w r i t e r ¼ asþ b w i t h a ¼ 1 a n d b ¼ 4. L e t

ðQ0; Q1; . . . ; Qn�4; U1; U2Þ be information tuples, where

each Qi is an 8-tuple, U1 and U2 are 4-tuples, which can

be combined into a single 8-tuple ðU1; U2Þ. We wish to

append a check 16-tuple ðP1; P2Þ to the information

tuples so that ðQ0; Q1; . . . ; Qn�4; ðU1; U2Þ; P1; P2Þ forms a

codeword of the code C, which is an ð8n; 8n� 16; 4Þ
code. Here, we let F be the encoder of the ð8; 4; 4)
extended Hamming code. The resulting code C can have

length up to 2h�1 ¼ 215 bits (see Section 3.1).

In this example, a ¼ 1, s ¼ 8, and n is the total number
of bytes in a codeword of the code C. If we assume
further that n � 10, then the hypotheses of Remark 6 are
satisfied, i.e., s � aþ 1 and n � 2þ as. Thus, by Remark
6, we can modify the Qi by first setting Qn�3 ¼ Qn�10 and
then setting Qn�10 ¼ 0. Then, the modified information
tuples are

ðQ0; Q1; . . . ; Qn�11; Qn�10; Qn�9; . . . ; Qn�4; Qn�3; ðU1; U2ÞÞ:

Then, as in Algorithm 2a, we can efficiently compute

the quantity Z ¼
Pn�3

i¼0 QiX
n�2�i modM, which is

shown in Fig. 4.

Remark 7.

1. Given r and s, either Algorithm 2a or Algorithm 2b
can be used to construct the code C that is ns
bits long, where 1 � n � 2r. The values of r and s
can be as small as 0 and 1, respectively. However,
the resulting code C can be trivial, e.g., if r ¼ 0,
then n ¼ 1 and C ¼ C1. If r ¼ 0, s ¼ 1, and
C1 ¼ f0g, then C ¼ C1 ¼ f0g. If s ¼ 1, C1 ¼ f0g,
r ¼ 1, and n ¼ 2r ¼ 2, then C ¼ fð0; 0Þg. How-
ever, when s ¼ 1, C1 ¼ f0g, r � 2, and n � 4, the
resulting code C can be nontrivial and each
codeword of C now has ns ¼ n bits. In particular,
from Algorithm 2b, it can be shown that the two
check tuples of an n-bit codeword are

P1 ¼ Z and P2 ¼
Xn�a�3

i¼0

Qi þ
Xa
i¼0

P1i;

i.e.,P2 is the even parity bit computed from the first

n� 1 bits of the codeword of C. For example, if

r ¼ 2 and n ¼ 2r ¼ 4, then C is the ð4; 1; 4Þ repeti-
tion code. This ð4; 1; 4Þ code is also constructed

from Algorithm 2a with r ¼ 1, n ¼ 2r ¼ 2, s ¼ 2,

and C1 ¼ fð0; 0Þg.

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 1, JANUARY 2005

Fig. 4. Pseudocode for Algorithm 2b. Here, Qi, U1, and U2 are input

information tuples, P is the output check tuple.

2. Let r ¼ 1, then M ¼ X þ 1. Thus, the code C is
2s b i t s l o n g (b y A l g o r i t hm 2a) a nd
P1 ¼ ðU1XÞmod ðX þ 1Þ, which is the even parity
of U1. For example, let C1 be the ð4; 1; 4Þ code, then
we can construct the code C of length 8, which is
the ð8; 4; 4Þ extended Hamming code. If we set
C1 ¼ ð8; 4; 4Þ code, then we can construct the code
C of length 16, i.e., C ¼ ð16; 11; 4Þ code. Repeating
this process, we can construct ð32; 26; 4Þ and
ð64; 57; 4Þ codes. This method is related to the
scheme of [15] and is effective to construct codes
that are small enough to fit into the computer
words.

3. Let r � 0, s � 1, C1 ¼ ðs; s�m; d1Þ with d1 � 4,
and h ¼ rþm. Then, using either Algorithm 2a
(if r � s) or Algorithm 2b (if r > s), we can
construct the code C that is an ðns; ns� h; 4Þ
code. In particular, if n ¼ 2r, then C is a ð2rs; 2rs�
h; 4Þ code. That is, starting from a code C1 of
length s, we can construct the code C of length
2rs. Further, if C1 is a ð2m�1; 2m�1 �m; 4Þ ex-
tended perfect code, then C is a ð2h�1; 2h�1 � h; 4Þ
extended perfect code. If C1 is a linear perfect
code, then C is also a linear perfect code. This
linear perfect code C and the extended Hamming
perfect code of length 2h�1 are equivalent, i.e., one
code can be obtained from the other code by
reordering the bit positions and adding a constant
vector (see [8, p. 39]). Equivalent codes have the
same minimum distance and length, but their
implementation complexity can be very different.
However, our algorithms can also generate fast
codes that are different from the perfect codes.
For example, in Algorithm 2a, let s ¼ 16 and let F
be the encoder of the extended ð16; 8; 6Þ nonlinear
Nordstrom-Robinson code (see also Section 3.8).
Then, the resulting code C is a nonlinear code
with dC ¼ 4, which is not equivalent to any
extended perfect codes.

4.1 Software Complexity

Now, we compare software complexity between the code C

and the CRC (the strongest code in Fig. 1). Here, we focus

on implementations that require no table lookup. Table-

lookup methods are discussed later in Remark 8.2
Suppose that s � r. Then, the binary code C of length

ns bits can be constructed using Algorithm 2a whose

complexity is dominated by the computation of Z and Y ,

which can be computed by the for-loop in Fig. 3. Within this

for-loop, the expression T ¼ ðTXÞmodN þQi is computed

in constant time (by Remark 4), while the expression Y ¼
Y þQi is computed by one XOR operation. Thus, this for-

loop has complexity OðnÞ. Hence, the time complexity of

the code C is also OðnÞ. Similarly, when s < r, the code C

under Algorithm 2b also has time complexity OðnÞ (see

Fig. 4). In summary, regardless of s � r or s < r, the code C

of length ns can be encoded with time complexity OðnÞ.
Now, consider the CRC that also has length ns bits. Here,

we limit our discussions to a generic CRC algorithm, i.e., a

general algorithm that is applicable to all generating

polynomials. Then, it is shown in Remark B3(a) that the
generic CRC algorithm has time complexity OðnsÞ. For
some specific generating polynomials whose nonzero terms
satisfy certain desirable properties, alternative algorithms
(such as shift and add [4] and on-the-fly [11]) may have
lower complexity.

When s is considered as a constant, we have
OðnsÞ ¼ OðnÞ. Thus, from a purely theoretical viewpoint,
both the CRC and the code C have the same level of
complexity. However, the extra factor s does not appear in
the time complexity of the code C, i.e., the code C is
approximately faster than the CRC by the factor OðsÞ. We
will show later, in Remark 8.1, that OðsÞ � 0:73s when these
error-detection codes are implemented in C programming
language.

Example 4. Here, we study codes of h ¼ 16 check bits (other
values of h are discussed later in Remark 8.1). Assume
that C1 is the ðs; s�m; 4Þ extended Hamming code and
the resulting code C is constructed by Algorithm 2a or
Algorithm 2b. Thus, both the CRC and the code C have
minimum distance d ¼ 4 and the maximum code lengths
of the code C and of the CRC are 215 and 215 � 1 � 215

bits, respectively (see also Remark 7.3). Thus, in terms of
the minimum distance and maximum code length, the
code C and the CRC perform almost identically. Our
goal here is to compare the software complexity of these
two codes. Software complexity refers to the number of
software operations to process one byte of a codeword.
Here, a code is called “faster” if it has lower operation
count. Simply stated, we write software programs (in
C programming language) for the code C and the CRC.
Then, we count the number of software operations
needed by each code to encode one byte of a codeword.
Computer programs for these codes and the rules for
counting the operations are given in Appendix D (which
can be found on the Computer Society Digital Library at
http://computer.org/tc/archives.htm).

Recall that a typical codeword consists of n tuples,
each tuple has s bits. Let tCðs; nÞ and tCRCðs; nÞ be the
software operation count required to compute the h ¼ 16
check bits for a codeword of the code C and of the CRC,
respectively. Then, from (29) of Appendix D (which can
be found on the Computer Society Digital Library at
http://computer.org/tc/archives.htm), we have

tCðs; nÞ ¼ 7:5nþ fðsÞ;

where fð8Þ ¼ 33:5, fð16Þ ¼ 51, fð32Þ ¼ 165:5, and
fð64Þ ¼ 372. From Algorithms 2a and 2b, the two check
tuples are given by P1 ¼ ðZ þ U1X

rÞmodM and
P2 ¼ Y2 þ F ðY1Þ. The first component of tCðs; nÞ is 7:5n
and represents the cost of computing Z and Y ¼ ðY1; Y2Þ,
while the second component fðsÞ is the cost of comput-
ing ðZ þ U1X

rÞmodM and Y2 þ F ðY1Þ. The first compo-
nent varies as a linear function of the tuple count n, while
the second component fðsÞ depends only on the tuple
size s and not on n. Thus, fðsÞ is a transient component
whose contribution becomes negligible for large n.

For the CRC, from (30) of Appendix D (which can be
found on the Computer Society Digital Library at http://
computer.org/tc/archives.htm), we have

NGUYEN: ERROR-DETECTION CODES: ALGORITHMS AND FAST IMPLEMENTATION 9

tCRCðs; nÞ ¼ 5:5nsþ 3n� gðsÞ;

where gð8Þ ¼ 52, gð16Þ ¼ 93, gð32Þ ¼ gð64Þ ¼ 90. For

example, let s ¼ 8 and n ¼ 64, i.e., ns ¼ 29 ¼ 512 bits.

Then, tCð8; 64Þ ¼ ð7:5Þð64Þ þ 33:5 ¼ 513:5, i.e., the code C

needs 513.5 operations to process 512 bits. Thus, the

operat ion count per byte of the code C is

ð8Þð513:5Þ=512 ¼ 8:02. Similarly, it can be shown that

the operation count per byte of the CRC is 46.2. Then, the

ratio of the byte operation counts of the CRC and the

code C is 46:2=8:02 ¼ 5:76, i.e., the code C is 5.76 times

faster than the CRC. The triplet ð46:2; 8:02; 5:76Þ for the

pair ðs; nsÞ ¼ ð8; 29Þ is recorded in the left top part of

Fig. 5. Triplets for other pairs ðs; nsÞ are similarly

obtained.
The results for software complexity of these two codes

are summarized in Fig. 5, where n is the total number of
s-tuples in a codeword, i.e., the total codeword length is
ns bits. Here, we consider a wide range of codeword
lengths: from 29 to 215 bits (i.e., from 64 to 4,096 bytes).
Each cell has three numbers: The first number is the
operation count per byte of the CRC, the second number
is the operation count per byte of the code C, the third
number is the ratio of the above two numbers and
represents the speed improvement of the code C
compared to the CRC.

From Fig. 5, as expected, the byte operation count of

the CRC slightly decreases when s increases because

processing of larger tuples reduces loop overhead. The

CRC’s operation count also slightly decreases with

decreasing n due to the negative term �gðs) in

tCRCðs; nÞ. Note that the operation count of the CRC

varies only slightly over a wide range of the tuple size s

and of the codeword length ns. In contrast, the operation

count of the code C varies much more as a function of s

and ns. Further, for each tuple size s, the code C is faster

for longer codeword length ns. This is desirable because

speed is more important for longer messages. The reason

for the speed variation of the code C is the contribution

from the transient term fðsÞ to the code overall speed.

This contribution is noticeable (negligible) if the code-

words are short (long). For smaller tuple size s (such as

s ¼ 8 and 16), the transient term is smaller. Thus, the

overall speed variation (as a function of ns) of the code C

is also smaller. For larger s (such as s ¼ 32 and 64), the

transient term is greater, resulting in more speed

variation (as a function of ns) for the code C. From

Fig. 5, the code C is substantially faster than the CRC,

especially for the tuple size s ¼ 32 or 64 bits and the code

length ns � 213 bits ¼ 1;024 bytes. In particular, if the

code length is ns ¼ 215 bits ¼ 4;096 bytes, then the code

C is 23.4 and 43.1 times faster than the CRC when s is 32

and 64 bits, respectively.

Remark 8.

1. In Example 4, we derive the operation count
expressions tCðs; nÞ and tCRCðs; nÞ for the special
case h ¼ 16 check bits (when the codes are
implemented in C programming language).
There, we also assume that the code C1 used in
the construction of the code C is the extended
Hamming code of length s. No such C1 code is
needed for the CRC. However, from Figs. 3 and 4,
the same expressions also hold true for other
values of h and for other codes C1, but with
different transient terms that are now denoted as
fðs; h; C1Þ and gðs; hÞ to reflect the their depen-
dency on s, h, and C1. Thus, in general, the
software operation counts required to compute
the h check bits for a codeword (which consists of
n tuples, each tuple is s bits) of these two codes
are:

tCðs; n; h; C1Þ ¼ 7:5nþ fðs; h; C1Þ
tCRCðs; n; hÞ ¼ 5:5nsþ 3n� gðs; hÞ;

where the transient terms fðs; h; C1Þ and gðs; hÞ
are independent of n and their contributions
become negligible when n is large enough. Thus,
for large n, we have

tCRCðs; n; hÞ
tCðs; n; h; C1Þ

� 5:5nsþ 3n

7:5n
� 5:5ns

7:5n
¼ 0:73s;

which is an estimate of the speed improvement of
the code C compared to the CRC. Again, for large
n, the code C needs approximately 7.5 operations
to process one s-tuple or 60=s operations per byte.
Recall that, in general, the code C is faster than
the CRC by the factor OðsÞ. Thus, we have OðsÞ �
0:73s when these error-detection codes are im-
plemented in C programming language.

2. In Fig. 5, we show, without using table lookup,
the speed performance of the code C and the
CRC, with h ¼ 16 check bits. Now, we discuss
table-lookup implementations for the same codes.
For concreteness, here we assume that each tuple

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 1, JANUARY 2005

Fig. 5. Operation count per byte of the CRC, operation count per byte of

the code C, and the ratio of the above two numbers.

Fig. 6. Operation count per byte and table size in bytes.

Qi has size s ¼ 8 bits, as is often used in table-
lookup implementations of common CRCs. Lar-
ger values of s can be similarly handled, but they
result in much larger table sizes. The results are
shown in Fig. 6 (whose detailed derivation is
given in Appendix D.1, which can be found on
the Computer Society Digital Library at http://
computer.org/tc/archives.htm). Note that, be-
cause s ¼ 8 is a small value, the transient terms
fðs; h; C1Þ and gðs; hÞ are also small compared to
the code overall operation counts. Thus, we
estimate the overall operation counts by omitting
these transient terms. In particular, the second
column shows that, without using table lookup,
the code C and the CRC use 7.5 and 47 operations
per byte, respectively. The exact values, which
vary from 7.51 to 8.02 (for the code C) and from
46.2 to 47 (for the CRC), are recorded in Fig. 5.
The estimated operation counts and table sizes
are shown in Fig. 6. As expected, the operation
counts become smaller at the cost of larger tables.

5 SUMMARY AND CONCLUSIONS

We develop Algorithm 1 for generating a large and general
family of binary error-detection codes. This algorithm has
two key parameters, s and r, where s is the size of each
tuple and r is the degree of the modulating polynomial M.
Algorithm 1 is expressed in general and abstract form to
facilitate the mathematical development of the resulting
code C. Error-detection codes used in practice are often
systematic. Thus, Algorithm 1 is transformed into systema-
tic versions to yield Algorithm 1a (if r � s) and Algorithm 1b
(if r > s).

A variety of error-detection codes (such as CRCs,
checksums, and other codes listed in Fig. 1) are developed
over the years for applications that require reliable
communication or storage. These codes are traditionally
considered as unrelated and independent of each other.
They also differ considerably in performance and complex-
ity. More complex codes such as CRCs are stronger codes
(with minimum distance d ¼ 4), whereas simple checksums
such as block-parity codes are weaker codes (with d ¼ 2). In
Section 3, we show that all these diverse codes (from CRCs
to checksums), as well as other linear and nonlinear codes,
are special cases of Algorithm 1. Thus, these seemingly
unrelated codes, which are independently developed over
many years, come from a single algorithm.

From Fig. 1, CRCs have the best error-detection cap-
ability, but introduce the longest encoding delay. In this
paper, we then introduce some non-CRC codes that have
good error-detection capabilities as well as fast encoding. In
Section 4, we present Algorithm 2a (for r � s) and
Algorithm 2b (for r > s), which are fast versions of
Algorithm 1a and Algorithm 1b, respectively. These two
fast algorithms produce only non-CRC codes. Further, some
of these non-CRC codes are not only fast but also reliable.
To achieve the minimum distance ¼ 4 using h check bits,
CRC length can be up to 2h�1 � 1 bits, while the length of
some non-CRC codes can be up to 2h�1 bits (i.e., they are

fast versions of perfect codes). We compare the computa-
tional complexity of these CRCs and non-CRC codes using
methods that require no table lookup. For long messages,
the non-CRC codes can be faster than the CRCs by the factor
OðsÞ. Further, OðsÞ � 0:73s when these codes are imple-
mented in C programming language. Finally, with the use
of table lookup, the operation counts are reduced at the cost
of precomputed tables.

ACKNOWLEDGMENTS

This work was supported in part by the US Office of Naval
Research.

REFERENCES

[1] D. Bertsekas and R. Gallager, Data Networks, second ed. Engle-
wood Cliffs, N.J.: Prentice Hall, 1992.

[2] A. Binstock and J. Rex, Practical Algorithms for Programmers.
Reading, Mass.: Addison-Wesley, 1995.

[3] P. Farkas, “Comments on ’Weighted Sum Codes for Error
Detection and Their Comparison with Existing Codes’,” IEEE/
ACM Trans. Networking, vol. 3, no. 2, pp. 222-223, Apr. 1995.

[4] D.C. Feldmeier, “Fast Software Implementation of Error Detection
Codes,” IEEE/ACM Trans. Networking, vol. 3, no. 6, pp. 640-651,
Dec. 1995.

[5] J.G. Fletcher, “An Arithmetic Checksum for Serial Transmissions,”
IEEE Trans. Comm., vol. 30, pp. 247-252, Jan. 1982.

[6] J.G. Fletcher, ACM Computing Rev., vol. 36, no. 1, p. 66, Jan. 1995.
[7] T. Klove and V. Korzhik, Error Detecting Codes: General Theory and

Their Application in Feedback Communication Systems. Kluwer
Academic, 1995.

[8] F.J. MacWilliams and N.J. A. Sloan, The Theory of Error-Correcting
Codes. New York: North-Holland, 1977.

[9] A.J. McAuley, “Weighted Sum Codes for Error Detection and
Their Comparison with Existing Codes,” IEEE/ ACM Trans.
Networking, vol. 2, no. 1, pp. 16-22, Feb. 1994.

[10] G.D. Nguyen, “A General Class of Error-Detection Codes,” Proc.
32nd Conf. Information Sciences and Systems, pp. 451-453, Mar. 1998.

[11] A. Perez, “Byte-Wise CRC Calculations,” IEEEMicro, vol. 3, pp. 40-
50, June 1983.

[12] T.V. Ramabadran and S.S. Gaitonde, “A Tutorial on CRC
Computations,” IEEE Micro, vol. 8, pp. 62-75, Aug. 1988.

[13] D.V. Sarwate, “Computation of Cyclic Redundancy Checks via
Table-Lookup,” Comm. ACM, vol. 31, no. 8, pp. 1008-1013, Aug.
1988.

[14] J. Stone, M. Greenwald, C. Partridge, and J. Hughes, “Performance
of Checksums and CRC’s over Real Data,” IEEE/ACM Trans.
Networking, vol. 6, no. 5, pp. 529-543, Oct. 1998.

[15] J.L. Vasilev, “On Nongroup Close-Packed Codes (in Russian),”
Problemi Cybernetica, vol. 8, pp. 337-339, 1962.

Gam D. Nguyen received the PhD in electrical
engineering from the University of Maryland,
College Park, in 1990. He has been at the US
Naval Research Laboratory, Washington, DC,
since 1991. His research interests include
communication systems and networks.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

NGUYEN: ERROR-DETECTION CODES: ALGORITHMS AND FAST IMPLEMENTATION 11

